login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091698
Matrix inverse of triangle A063967.
4
1, -1, 1, 1, -3, 1, -1, 8, -5, 1, 1, -23, 19, -7, 1, -1, 74, -69, 34, -9, 1, 1, -262, 256, -147, 53, -11, 1, -1, 993, -986, 615, -265, 76, -13, 1, 1, -3943, 3935, -2571, 1235, -431, 103, -15, 1, -1, 16178, -16169, 10862, -5591, 2216, -653, 134, -17, 1, 1
OFFSET
0,5
COMMENTS
Riordan array (1/(1+x), (sqrt(1+6x+5x^2)-x-1)/(2(1+x))). The absolute value array is (1/(1-x),xc(x)/(1-xc(x))) where c(x) is the g.f. of A000108. It factorizes as (1/(1-x),x/(1-x))(1,xc(x)). - Paul Barry, Jun 10 2005
LINKS
Lara K. Pudwell, Ascent sequences and the binomial convolution of Catalan numbers, arXiv preprint arXiv:1408.6823 [math.CO], 2014.
EXAMPLE
From Paul Barry, Apr 15 2010: (Start)
Triangle begins
1,
-1, 1,
1, -3, 1,
-1, 8, -5, 1,
1, -23, 19, -7, 1,
-1, 74, -69, 34, -9, 1,
1, -262, 256, -147, 53, -11, 1,
-1, 993, -986, 615, -265, 76, -13, 1,
1, -3943, 3935, -2571, 1235, -431, 103, -15, 1
Production matrix begins
-1, 1,
0, -2, 1,
0, 1, -2, 1,
0, -1, 1, -2, 1,
0, 1, -1, 1, -2, 1,
0, -1, 1, -1, 1, -2, 1,
0, 1, -1, 1, -1, 1, -2, 1,
0, -1, 1, -1, 1, -1, 1, -2, 1,
0, 1, -1, 1, -1, 1, -1, 1, -2, 1,
0, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1 (End)
MATHEMATICA
rows = 11; t[n_, k_] := Sum[Binomial[j, n - j]*Binomial[j, k], {j, 0, n}]; T = Table[t[n, k], {n, 0, rows - 1}, {k, 0, rows - 1}] // Inverse; Table[ T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 11 2017 *)
CROSSREFS
Row sums: A091699. Row sums (absolute values): A007317. Column 1: A050511.
Sequence in context: A117425 A287215 A168216 * A134380 A263859 A124469
KEYWORD
sign,tabl
AUTHOR
Christian G. Bower, Jan 29 2004
STATUS
approved