OFFSET
1,5
COMMENTS
a(n) divides A001783(n). - M. F. Hasler, Jul 23 2011
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..800
J. B. Cosgrave and K. Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008)
FORMULA
EXAMPLE
The positive integers which are <= 9/2 and which are coprime to 9 are 1, 2 and 4. So a(9) = 1*2*4 = 8.
MAPLE
a:=proc(n) local b, k: b:=1: for k from 1 to floor(n/2) do if gcd(k, n)=1 then b:=b*k else b:=b fi od: b; end: seq(a(n), n=1..41); # Emeric Deutsch, Nov 03 2006
MATHEMATICA
f[n_] := Times @@ Select[Range[Floor[n/2]], GCD[ #, n] == 1 &]; Table[f[n], {n, 36}] (* Ray Chandler, Nov 12 2006 *)
PROG
(PARI) A124441(n)=prod(k=2, n\2, k^(gcd(k, n)==1)) \\ M. F. Hasler, Jul 23 2011
(Sage)
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
def A124441(n): return Gauss_factorial(n//2, n)
[A124441(n) for n in (1..36)] # Peter Luschny, Oct 01 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 01 2006
EXTENSIONS
More terms from Emeric Deutsch, Nov 03 2006
STATUS
approved