login
A123886
a(0)=1. a(n) = a(n-1) + (number of earlier terms {i.e., terms a(0) through a(n-1)} that divide n).
2
1, 2, 4, 5, 8, 10, 12, 13, 17, 18, 22, 23, 27, 29, 31, 33, 37, 39, 42, 43, 48, 49, 52, 54, 59, 61, 64, 66, 69, 71, 75, 77, 81, 83, 86, 88, 93, 95, 97, 100, 106, 107, 110, 112, 116, 118, 121, 122, 128, 130, 134, 136, 141, 142, 147, 149, 153, 154, 157, 159, 165, 167, 170
OFFSET
0,2
LINKS
EXAMPLE
Among terms a(0) through a(5) there are two terms that divide 6: a(0)=1, a(1)=2. So a(6) = a(5) + 2 = 12.
MAPLE
A123886 := proc(maxn) local a, nexta, n, i ; a := [1] ; for n from 2 to maxn do nexta := op(n-1, a) ; for i from 1 to n-1 do if (n-1) mod op(i, a) = 0 then nexta := nexta +1 ; fi ; od ; a := [op(a), nexta] ; od ; RETURN(a) ; end: maxn := 100 : alist := A123886(maxn) : for i from 1 to maxn do printf("%d, ", op(i, alist)) ; end : # R. J. Mathar, Oct 21 2006
MATHEMATICA
f[l_List] := Append[l, Last[l] + Length[Select[l, Mod[Length[l], # ] == 0 &]]]; Nest[f, {1}, 63] (* Ray Chandler, Oct 19 2006 *)
PROG
(Python)
a, an, la = [1], 1, 1
print(la-1, an)
while la < 63:
....dc, di = 0, 0
....while di < la:
........if la%a[di] == 0:
............dc = dc+1
........di = di+1
....an = an+dc
....la, a = la+1, a+[an]
....print(la-1, an) # A.H.M. Smeets, Jan 25 2019
CROSSREFS
Cf. A123885.
Sequence in context: A112777 A188972 A047612 * A005242 A323976 A188975
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Oct 17 2006
EXTENSIONS
Extended by Ray Chandler, Oct 19 2006
More terms from R. J. Mathar, Oct 21 2006
STATUS
approved