login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047612
Numbers that are congruent to {0, 2, 4, 5} mod 8.
1
0, 2, 4, 5, 8, 10, 12, 13, 16, 18, 20, 21, 24, 26, 28, 29, 32, 34, 36, 37, 40, 42, 44, 45, 48, 50, 52, 53, 56, 58, 60, 61, 64, 66, 68, 69, 72, 74, 76, 77, 80, 82, 84, 85, 88, 90, 92, 93, 96, 98, 100, 101, 104, 106, 108, 109, 112, 114, 116, 117, 120, 122, 124
OFFSET
1,2
FORMULA
From Bruno Berselli, Jul 18 2012: (Start)
G.f.: x^2*(2+2*x+x^2+3*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = 2*n-2-(1+(-1)^n)*(1+i^n)/4, where i=sqrt(-1). (End)
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(2k) = A047617(k), a(2k-1) = A008586(k-1) for k>0. (End)
E.g.f.: (6 - cos(x) + 4*(x - 1)*sinh(x) + (4*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, Jun 03 2016
Sum_{n>=2} (-1)^n/a(n) = (2-sqrt(2))*Pi/16 + 5*log(2)/8 + sqrt(2)*log(sqrt(2)-1)/8. - Amiram Eldar, Dec 21 2021
MAPLE
A047612:=n->2*n-2-(1+I^(2*n))*(1+I^n)/4: seq(A047612(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
MATHEMATICA
Select[Range[0, 120], MemberQ[{0, 2, 4, 5}, Mod[#, 8]] &] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 2, 4, 5, 8}, 60] (* Bruno Berselli, Jul 18 2012 *)
PROG
From Bruno Berselli, Jul 18 2012: (Start)
(Magma) [n: n in [0..120] | n mod 8 in [0, 2, 4, 5]];
(Maxima) makelist(2*n-2-(1+(-1)^n)*(1+%i^n)/4, n, 1, 60);
(PARI) concat(0, Vec((2+2*x+x^2+3*x^3)/((1+x)*(1-x)^2*(1+x^2))+O(x^60))) (End)
CROSSREFS
Sequence in context: A046809 A112777 A188972 * A123886 A005242 A323976
KEYWORD
nonn,easy
STATUS
approved