The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123876 Riordan array (1/(1+2*x), x*(1+x)/(1+2*x)^2). 4
 1, -2, 1, 4, -5, 1, -8, 18, -8, 1, 16, -56, 41, -11, 1, -32, 160, -170, 73, -14, 1, 64, -432, 620, -377, 114, -17, 1, -128, 1120, -2072, 1666, -704, 164, -20, 1, 256, -2816, 6496, -6608, 3649, -1178, 223, -23, 1, -512, 6912, -19392, 24192, -16722, 7001, -1826, 291, -26, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Inverse of A116395. Row sums are A123877. Diagonal sums are (-1)^n*A085810(n). Unsigned version is A114164. LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened FORMULA Number triangle T(n,k) = (-1)^(n-k)*Sum_{j=0..n} C(k,j-k)*C(n,j)*2^(n-j). T(n,k) = T(n-1,k-1) - 4*T(n-1,k) + T(n-2,k-1) - 4*T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = -2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 18 2014 EXAMPLE Triangle begins     1;    -2,   1;     4,  -5,    1;    -8,  18,   -8,   1;    16, -56,   41, -11,   1;   -32, 160, -170,  73, -14, 1; MATHEMATICA Table[(-1)^(n-k)*Sum[2^(n-j)*Binomial[k, j-k]*Binomial[n, j], {j, 0, n}], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 08 2019 *) PROG (PARI) T(n, k) = b=binomial; (-1)^(n-k)*sum(j=0, n, 2^(n-j)*b(k, j-k)* b(n, j)); \\ G. C. Greubel, Aug 08 2019 (MAGMA) [(-1)^(n-k)*(&+[2^(n-j)*Binomial(k, j-k)*Binomial(n, j): j in [0..n]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 08 2019 (Sage) b=binomial; [[(-1)^(n-k)*sum(2^(n-j)*b(k, j-k)*b(n, j) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 08 2019 (GAP) Flat(List([0..12], n-> List([0..n], k-> (-1)^(n-k)*Sum([0..n], j-> 2^(n-j)*Binomial(k, j-k)*Binomial(n, j) )))); CROSSREFS Cf. A085810, A114164, A116395, A123877. Sequence in context: A121574 A117317 A124237 * A114164 A176667 A126182 Adjacent sequences:  A123873 A123874 A123875 * A123877 A123878 A123879 KEYWORD easy,sign,tabl AUTHOR Paul Barry, Oct 16 2006 EXTENSIONS More terms added by G. C. Greubel, Aug 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 19:18 EDT 2021. Contains 343746 sequences. (Running on oeis4.)