login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123876 Riordan array (1/(1+2*x), x*(1+x)/(1+2*x)^2). 4
1, -2, 1, 4, -5, 1, -8, 18, -8, 1, 16, -56, 41, -11, 1, -32, 160, -170, 73, -14, 1, 64, -432, 620, -377, 114, -17, 1, -128, 1120, -2072, 1666, -704, 164, -20, 1, 256, -2816, 6496, -6608, 3649, -1178, 223, -23, 1, -512, 6912, -19392, 24192, -16722, 7001, -1826, 291, -26, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Inverse of A116395.

Row sums are A123877.

Diagonal sums are (-1)^n*A085810(n).

Unsigned version is A114164.

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

Number triangle T(n,k) = (-1)^(n-k)*Sum_{j=0..n} C(k,j-k)*C(n,j)*2^(n-j).

T(n,k) = T(n-1,k-1) - 4*T(n-1,k) + T(n-2,k-1) - 4*T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = -2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 18 2014

EXAMPLE

Triangle begins

    1;

   -2,   1;

    4,  -5,    1;

   -8,  18,   -8,   1;

   16, -56,   41, -11,   1;

  -32, 160, -170,  73, -14, 1;

MATHEMATICA

Table[(-1)^(n-k)*Sum[2^(n-j)*Binomial[k, j-k]*Binomial[n, j], {j, 0, n}], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 08 2019 *)

PROG

(PARI) T(n, k) = b=binomial; (-1)^(n-k)*sum(j=0, n, 2^(n-j)*b(k, j-k)* b(n, j)); \\ G. C. Greubel, Aug 08 2019

(MAGMA) [(-1)^(n-k)*(&+[2^(n-j)*Binomial(k, j-k)*Binomial(n, j): j in [0..n]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 08 2019

(Sage)

b=binomial;

[[(-1)^(n-k)*sum(2^(n-j)*b(k, j-k)*b(n, j) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 08 2019

(GAP) Flat(List([0..12], n-> List([0..n], k-> (-1)^(n-k)*Sum([0..n], j-> 2^(n-j)*Binomial(k, j-k)*Binomial(n, j) ))));

CROSSREFS

Cf. A085810, A114164, A116395, A123877.

Sequence in context: A121574 A117317 A124237 * A114164 A176667 A126182

Adjacent sequences:  A123873 A123874 A123875 * A123877 A123878 A123879

KEYWORD

easy,sign,tabl

AUTHOR

Paul Barry, Oct 16 2006

EXTENSIONS

More terms added by G. C. Greubel, Aug 08 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 20:40 EDT 2019. Contains 326189 sequences. (Running on oeis4.)