The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A121574 Riordan array (1/(1-2*x), x*(1+x)/(1-2*x)). 2
 1, 2, 1, 4, 5, 1, 8, 16, 8, 1, 16, 44, 37, 11, 1, 32, 112, 134, 67, 14, 1, 64, 272, 424, 305, 106, 17, 1, 128, 640, 1232, 1168, 584, 154, 20, 1, 256, 1472, 3376, 3992, 2641, 998, 211, 23, 1, 512, 3328, 8864, 12592, 10442, 5221, 1574, 277, 26, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums are A006190(n+1); diagonal sums are A077939. Inverse is A121575. A generalized Delannoy number triangle. Antidiagonal sums are A002478. - Philippe Deléham, Nov 10 2011. LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened FORMULA Number array T(n,k) = Sum_{j=0..n-k} C(k,j)*C(n-j,k)*2^(n-k-j). T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1). - Philippe Deléham, Nov 10 2011 EXAMPLE Triangle begins    1;    2,   1;    4,   5,   1;    8,  16,   8,   1;   16,  44,  37,  11,   1;   32, 112, 134,  67,  14,  1;   64, 272, 424, 305, 106, 17, 1; MAPLE T:=(n, k)->add(binomial(k, j)*binomial(n-j, k)*2^(n-k-j), j=0..n-k): seq(seq(T(n, k), k=0..n), n=0..9); # Muniru A Asiru, Nov 02 2018 MATHEMATICA Table[Sum[Binomial[k, j] Binomial[n-j, k] 2^(n-k-j), {j, 0, n-k}], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 02 2018 *) PROG (PARI) for(n=0, 10, for(k=0, n, print1(sum(j=0, n-k, binomial(k, j)* binomial(n-j, k)*2^(n-k-j)), ", "))) \\ G. C. Greubel, Nov 02 2018 (MAGMA) [[(&+[ Binomial(k, j)*Binomial(n-j, k)*2^(n-k-j): j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018 (GAP) T:=Flat(List([0..9], n->List([0..n], k->Sum([0..n-k], j->Binomial(k, j)*Binomial(n-j, k)*2^(n-k-j))))); # Muniru A Asiru, Nov 02 2018 CROSSREFS Cf. Diagonals: A000012, A016789, A080855, A000079, A053220. Sequence in context: A248670 A080935 A102661 * A117317 A124237 A123876 Adjacent sequences:  A121571 A121572 A121573 * A121575 A121576 A121577 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Aug 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 03:49 EDT 2021. Contains 343784 sequences. (Running on oeis4.)