login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123652
a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41.
3
14, 2339155617965, 36923966682271786990, 4854597644377050732053585, 45547499507677574921923909526, 80266855145143309588022024772829, 44586202603279528645530450127574150
OFFSET
1,1
COMMENTS
13th row, A(13,n), of the infinite array A(k,n) = 1 + Sum_{i=1..k} n^prime(i). If we deem prime(0) = 1, the array is A(k,n) = Sum_{i=0..k} n^prime(i). The first row is A002522 = 1 + n^2. The second row is A098547 = 1 + n^2 + n^3. The 3rd row, A(3,n), is A123650. The 4th row, A(4,n), is A123111 1 +n^2 +n^3 +n^5 +n^7. 10101101 (base n). A(n,n) is A123113 Main diagonal of prime power sum array. The sequence A(13,n) = a(n) can never be prime because of the polynomial factorization. It can be semiprime, as with a(1) = 14 and a(2) = 2339155617965 = 5 * 467831123593 and a(6) and 100010000010100000100010100010100010101101 = 101 * 990198019901980199010000990199010001001. We similarly have polynomial factorization for the 7th row, A123651 = A(7,n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 = +/- (n^2+1)*(n^15-n^13+2n^11-n^9+n^7+n^3+1).
LINKS
FORMULA
a(n) = 1+n^2+n^3+n^5+n^7+n^11+n^13+n^17+n^19+n^23+n^29+n^31+n^37+n^41 = 100010000010100000100010100010100010101101(base n) = +/-(n^2+1)*(n^39-n^37+2n^35-2n^33+2n^31-n^29+2n^27-2n^25+2n^23-n^21+n^19+n^15-n^13+2n^11-n^9+n^7+n^3+1).
MATHEMATICA
Table[1+Total[n^Prime[Range[PrimePi[41]]]], {n, 8}] (* Harvey P. Dale, Dec 20 2010 *)
PROG
(PARI) for(n=1, 25, print1(1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41, ", ")) \\ G. C. Greubel, Oct 17 2017
(Magma) [1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41: n in [1..25]]; // G. C. Greubel, Oct 17 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 04 2006
STATUS
approved