login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123651
a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17.
3
8, 141485, 130914100, 17251189841, 764209065776, 16940083223773, 232729381165100, 2252358161564225, 16679754951397336, 100010100010101101, 505481836542757988, 2218718842990269265, 8650720586711446400
OFFSET
1,1
COMMENTS
7th row, A(7,n), of the infinite array A(k,n) = 1 + Sum_{i=1..k} n^prime(i). If we deem prime(0) = 1, the array is A(k,n) = Sum_{i=0..k} n^prime(i). The first row is A002522 = 1 + n^2. The second row is A098547 = 1 + n^2 + n^3. The 3rd row, A(3,n), is A123650. The 4th row, A(4,n), is A123111 1 + n^2 + n^3 + n^5 + n^7. 10101101 (base n). A(n,n) is A123113 Main diagonal of prime power sum array. The current sequence, A(7,n), can never be prime, because of the polynomial factorization a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 = +/- (n^2+1)*(n^15 -n^13 +2n^11 -n^9 +n^7 +n^3 +1). It can be semiprime, as with a(2) and with a(10) = 100010100010101101 = 101 * 990199010001001 and a(14). We similarly have polynomial factorization for A123652 = A(13,n) = 1 +n^2 +n^3 +n^5 +...+ n^41.
LINKS
FORMULA
a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 = 100010100010101101 (base n) = +/- (n^2+1)*(n^15-n^13+2n^11-n^9+n^7+n^3+1).
MATHEMATICA
Table[Total[n^Prime[Range[7]]]+1, {n, 20}] (* Harvey P. Dale, Aug 22 2012 *)
PROG
(PARI) for(n=1, 25, print1(1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17, ", ")) \\ G. C. Greubel, Oct 17 2017
(Magma) [1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17: n in [1..25]]; // G. C. Greubel, Oct 17 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 04 2006
STATUS
approved