login
A123638
Consider the 2^n compositions of n and count only those ending in an odd part with row sum A001045.
3
1, 1, 3, 8, 25, 83, 299, 1158, 4813, 21373, 100955, 504916, 2662761, 14754311, 85643459, 519493938, 3285790317, 21628225041, 147887079907, 1048634836288, 7698589399833, 58432476430139, 457901993065915, 3700291495531166
OFFSET
1,3
COMMENTS
Compositions ending in an even part yield sequence 0 1 2 6 18 ... A123639. and a(n)+A123639(n) = A047970(n). Ending parity of compositions can be detected using mod(A065120,2)
EXAMPLE
4
31 32 33
211 221 222
1111
Consider the above multisets: permute and note the parity of the ending part of each of the 14 compositions.
4
31 13 32 23 33
211 121 112 221 212 122 222
1111
4 is even
31 13 23 and 33 are odd
32 is even
etc
there are 0 + 4 + 3 + 1 = 8 odd compositions therefore a(4)=8.
MAPLE
g:= proc(b, t, l, m) option remember; if t=0 then b*l else add (g(b, t-1, irem(k, 2), m), k=1..m-1) +g(1, t-1, irem(m, 2), m) fi end: a:= n-> add (g(0, k, 0, n+1-k), k=1..n): seq (a(n), n=1..30);
MATHEMATICA
g[b_, t_, l_, m_] := g[b, t, l, m] = If[t == 0 , b*l , Sum[g[b, t-1, Mod[k, 2], m], {k, 1, m-1}] + g[1, t-1, Mod[m, 2], m]]; a[n_] := Sum[g[0, k, 0, n+1-k], {k, 1, n}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 04 2013, translated from Alois P. Heinz's Maple program *)
KEYWORD
nonn
AUTHOR
Alford Arnold, Oct 04 2006
EXTENSIONS
Offset corrected, Maple program and more terms added by Alois P. Heinz, Nov 06 2009
STATUS
approved