login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123603
Triangle T(n,k), 0<=k<=n, read by rows, with T(0,0) = 1, T(n,k) = 0 if k<0 or if k>n, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-2) - T(n-2,k-1) + T(n-2,k).
2
1, 1, 1, 2, 1, 2, 3, 3, 3, 3, 5, 5, 9, 5, 5, 8, 10, 17, 17, 10, 8, 13, 18, 36, 35, 36, 18, 13, 21, 33, 69, 81, 81, 69, 33, 21, 34, 59, 133, 167, 199, 167, 133, 59, 34, 55, 105, 249, 345, 435, 435, 345, 249, 105, 55, 89, 185, 462, 687, 945, 1005, 945, 687, 462, 185, 89
OFFSET
0,4
FORMULA
T(n,k) = T(n,n-k).
T(n,0) = Fibonacci(n+1) = A000045(n+1).
T(n+1,1) = A010049(n+1).
Sum_{k,0<=k<=n} T(n,k)*x^k = A000045(n+1), A000129(n+1), A030195(n+1), A015532(n+1) for x = 0, 1, 2, 3 respectively.
G.f.: 1/(1 - x - x*y - x^2 + x^2*y - x^2*y^2).
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 2;
3, 3, 3, 3;
5, 5, 9, 5, 5;
8, 10, 17, 17, 10, 8;
13, 18, 36, 35, 36, 18, 13;
21, 33, 69, 81, 81, 69, 33, 21;
34, 59, 133, 167, 199, 167, 133, 59, 34;
55, 105, 249, 345, 435, 435, 345, 249, 105, 55;
89, 185, 462, 687, 945, 1005, 945, 687, 462, 185, 89; ...
MATHEMATICA
CoefficientList[CoefficientList[Series[1/(1 - x - x*y - x^2 + x^2*y - x^2*y^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 16 2017 *)
T[0, 0] := 1; T[n_, k_] := If[k < 0 || k > n, 0, T[n - 1, k - 1] + T[n - 1, k] + T[n - 2, k - 2] - T[n - 2, k - 1] + T[n - 2, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Oct 16 2017 *)
CROSSREFS
Cf. A000045, A000129, A322239 (central terms).
Sequence in context: A343044 A003986 A343836 * A228506 A228285 A020908
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Nov 14 2006, Mar 14 2014
STATUS
approved