login
A228506
T(n,k)=Number of nXk binary arrays with top left value 1 and no two ones adjacent horizontally, vertically, diagonally or antidiagonally.
11
1, 1, 1, 2, 1, 2, 3, 3, 3, 3, 5, 5, 12, 5, 5, 8, 11, 29, 29, 11, 8, 13, 21, 88, 87, 88, 21, 13, 21, 43, 239, 358, 358, 239, 43, 21, 34, 85, 684, 1252, 2002, 1252, 684, 85, 34, 55, 171, 1909, 4749, 9528, 9528, 4749, 1909, 171, 55, 89, 341, 5392, 17285, 49101, 59839, 49101
OFFSET
1,4
COMMENTS
Table starts
..1...1....2.....3.......5........8........13.........21..........34
..1...1....3.....5......11.......21........43.........85.........171
..2...3...12....29......88......239.......684.......1909........5392
..3...5...29....87.....358.....1252......4749......17285.......64235
..5..11...88...358....2002.....9528.....49101.....243118.....1228036
..8..21..239..1252....9528....59839....413786....2724191....18387032
.13..43..684..4749...49101...413786...3862849...34229311...311423874
.21..85.1909.17285..243118..2724191..34229311..405580157..4951454523
.34.171.5392.64235.1228036.18387032.311423874.4951454523.81304395949
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +2*a(n-2)
k=3: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3)
k=4: a(n) = 2*a(n-1) +7*a(n-2) -2*a(n-3) -3*a(n-4)
k=5: a(n) = 2*a(n-1) +16*a(n-2) +a(n-3) -27*a(n-4) +a(n-5) +4*a(n-6)
k=6: [order 8]
k=7: [order 14]
EXAMPLE
Some solutions for n=4 k=4
..1..0..0..0....1..0..0..0....1..0..0..1....1..0..0..0....1..0..0..1
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..1....1..0..0..0
..1..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..1..0
CROSSREFS
Column 1 is A000045
Column 2 is A001045
Sequence in context: A003986 A343836 A123603 * A228285 A020908 A240873
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Aug 23 2013
STATUS
approved