OFFSET
1,35
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
LINKS
R. W. Robinson, Rows 1 through 14, flattened
EXAMPLE
Triangle begins:
n = 1
k = 0 : 0
************************ TOTAL (n = 1) = 0
n = 2
k = 0 : 0
k = 1 : 0
************************ TOTAL (n = 2) = 0
n = 3
k = 0 : 0
k = 1 : 0
k = 2 : 0
k = 3 : 0
************************ TOTAL (n = 3) = 0
n = 4
k = 0 : 0
k = 1 : 0
k = 2 : 0
k = 3 : 0
k = 4 : 0
k = 5 : 0
k = 6 : 1
************************ TOTAL (n = 4) = 1
n = 5
k = 0 : 0
k = 1 : 0
k = 2 : 0
k = 3 : 0
k = 4 : 0
k = 5 : 0
k = 6 : 0
k = 7 : 0
k = 8 : 1
k = 9 : 1
k = 10 : 1
************************ TOTAL (n = 5) = 3
From Hugo Pfoertner, Nov 22 2020: (Start)
Transposed table:
Nodes Sums
4 5 6 7 8 9 10 11 12 13 |A338604
Edges-----------------------------------------------------|-------
6 | 1 . . . . . . . . . | 1
7 | . . . . . . . . . . | 0
8 | . 1 . . . . . . . . | 1
9 | . 1 2 . . . . . . . | 3
10 | . 1 4 . . . . . . . | 5
11 | . . 5 4 . . . . . . | 9
12 | . . 4 18 5 . . . . . | 27
13 | . . 2 30 35 . . . . . | 67
14 | . . 1 34 136 27 . . . . | 198
15 | . . 1 29 309 288 19 . . . | 646
16 | . . . 17 465 1377 357 . . . | 2216
17 | . . . 9 505 3978 3478 208 . . | 8178
18 | . . . 5 438 7956 18653 4958 85 . | 32085
19 | . . . 2 310 11904 65011 50575 4291 . | 132093
20 | . . . 1 188 14134 163812 302854 85421 1958 | 568368
(End)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Nov 13 2006
STATUS
approved