login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230564
Rational rank of the n-th taxicab elliptic curve x^3 + y^3 = A011541(n).
1
0, 2, 4, 5, 4
OFFSET
1,2
COMMENTS
Guy, 2004: "Andrew Bremner has computed the rational rank of the elliptic curve x^3 + y^3 = Taxicab(n) as equal to 2, 4, 5, 4 for n = 2, 3, 4, 5, respectively."
Abhinav Kumar computed that a(1) = 0 (see the MathOverflow link for details). But Euler and Legendre scooped him (see the next comment).
Noam D. Elkies: "... the fact that x^3+y^3=2 has no [rational] solutions other than x=y=1 is attributed by Dickson to Euler himself: see Dickson's History of the Theory of Numbers (1920) Vol.II, Chapter XXI "Numbers the Sum of Two Rational Cubes", page 572. The reference (footnote 182) is "Algebra, 2, 170, Art. 247; French transl., 2, 1774, pp. 355-60; Opera Omnia, (1), I, 491". In the next page Dickson also refers to work of Legendre that includes this result (footnote 184: "Théorie des nombres, Paris, 1798, 409; ...")." See the MathOverflow link for further comments from Elkies.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, D1.
LINKS
J. Silverman, Taxicabs and sums of two cubes, Amer. Math. Monthly, 100 (1993), 331-340.
FORMULA
a(n) = A060838(A011541(n)).
EXAMPLE
rank(x^3 + y^3 = 2) = 0.
rank(x^3 + y^3 = 1729) = 2.
rank(x^3 + y^3 = 87539319) = 4.
rank(x^3 + y^3 = 6963472309248) = 5.
rank(x^3 + y^3 = 48988659276962496) = 4.
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Jonathan Sondow, Oct 25 2013
STATUS
approved