login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123542 Triangular array T(n,k) giving number of 3-connected graphs with n labeled nodes and k edges (n >= 4, ceiling(3*n/2) <= k <= n(n-1)/2). 4
1, 15, 10, 1, 70, 492, 690, 395, 105, 15, 1, 5040, 28595, 58905, 63990, 42392, 18732, 5880, 1330, 210, 21, 1, 16800, 442680, 2485920, 6629056, 10684723, 11716068, 9409806, 5824980, 2872317, 1147576, 373156, 98112, 20475, 3276 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,2

REFERENCES

R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.

T. R. S. Walsh, Counting labelled three-connected and homeomorphically irreducible two-connected graphs, J. Comb. Theory B (1982) 1-11, Table 1.

LINKS

R. W. Robinson, Rows 4 through 15, flattened (row 15 is incomplete).

EXAMPLE

Triangle begins:

n = 4

k = 6 : 1

Total( 4) = 1

n = 5

k = 8 : 15

k = 9 : 10

k = 10 : 1

Total( 5) = 26

n = 6

k = 9 : 70

k = 10 : 492

k = 11 : 690

k = 12 : 395

k = 13 : 105

k = 14 : 15

k = 15 : 1

Total( 6) = 1768

n = 7

k = 11 : 5040

k = 12 : 28595

k = 13 : 58905

k = 14 : 63990

k = 15 : 42392

k = 16 : 18732

k = 17 : 5880

k = 18 : 1330

k = 19 : 210

k = 20 : 21

k = 21 : 1

Total( 7) = 225096

CROSSREFS

Row sums give A005644. Cf. A123527, A123534.

Sequence in context: A139725 A009929 A166523 * A215236 A040212 A299316

Adjacent sequences:  A123539 A123540 A123541 * A123543 A123544 A123545

KEYWORD

nonn,tabf

AUTHOR

N. J. A. Sloane, Nov 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 28 21:04 EDT 2022. Contains 354907 sequences. (Running on oeis4.)