login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123171
a(1) = 123, a(n) = sum of digits of all previous terms.
1
123, 6, 12, 15, 21, 24, 30, 33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, 147, 159, 174, 186, 201, 204, 210, 213, 219, 231, 237, 249, 264, 276, 291, 303, 309, 321, 327, 339, 354, 366, 381, 393, 408, 420, 426, 438, 453, 465, 480, 492, 507, 519, 534
OFFSET
1,1
COMMENTS
a(1) = 123 a(2) = 1 + 2 + 3 = 6 a(3) = (1 + 2 + 3) + 6 = 12 a(4) = (1 + 2 + 3) + 6 + (1 + 2) = 15 a(5) = (1 + 2 + 3) + 6 + (1 + 2) + (1 + 5) = 21 a(6) = (1 + 2 + 3) + 6 + (1 + 2) + (1 + 5) + (2 + 1) = 24 a(7) = (1 + 2 + 3) + 6 + (1 + 2) + (1 + 5) + (2 + 1) + (2 + 4) = 30 ...
Essentially the same as A016052. - R. J. Mathar, Jun 18 2008
LINKS
Sergio Silva, Teste Numerico.
FORMULA
a(n) = a(n-1) + sum of digits of a(n-1), a(1) = 123
MATHEMATICA
s={123}; sum=0; Do[sum=sum+Total[IntegerDigits[s[[-1]]]]; AppendTo[s, sum], {n, 54}]; s (* James C. McMahon, Nov 16 2024 *)
PROG
(PARI) s=0; a=123; print1(a, ", "); for(n=1, 100, dig=eval(Vec(Str(a))); s=s+sum(i=1, length(dig), dig[i]); print1(s, ", "); a=s)
CROSSREFS
Cf. A004207.
Sequence in context: A015042 A062233 A351406 * A125097 A302211 A308004
KEYWORD
nonn,base
AUTHOR
Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 02 2006
STATUS
approved