OFFSET
0,2
REFERENCES
Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology, Dover, New York, 1978, pp. 57-58.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = 3^k * (1 + (n mod 2)).
From G. C. Greubel, Dec 30 2022: (Start)
T(n, k) = 3^k*(3 - (-1)^n)/2.
T(n, 0) = (3 - (-1)^n)/2.
T(n, n) = 3^n*(3 - (-1)^n)/2.
T(2*n, n) = A000244(n).
T(2*n+1, n+1) = 6*T(2*n, n).
T(2*n+1, n) = 2*T(2*n, n).
T(2*n+1, n-1) = 6*T(2*n, n).
Sum_{k=0..n} T(n, k) = (1/4)*(3 - (-1)^n)*(3^(n+1) - 1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/8)*(3 - (-1)^n)*(1 + (-1)^n*3^(n+1)).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/8)*(3*(6 - (-1)^binomial(n+1, 2))*3^floor(n/2) - (6 + (-1)^n)). (End)
EXAMPLE
Triangle begins as:
1;
2, 6;
1, 3, 9;
2, 6, 18, 54;
1, 3, 9, 27, 81;
2, 6, 18, 54, 162, 486;
1, 3, 9, 27, 81, 243, 729;
MATHEMATICA
Table[3^k*(1+Mod[n, 2]), {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Magma) [3^k*(3-(-1)^n)/2: k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2022
(SageMath)
def A122761(n, k): return 3^k*(3-(-1)^n)/2
flatten([[A122761(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 30 2022
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Sep 21 2006
EXTENSIONS
Name and formula corrected by Jon Perry, Oct 15 2012
Edited by G. C. Greubel, Dec 30 2022
STATUS
approved