login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122761
Triangular read by rows: T(n, k) = 3^k * (1 + (n mod 2)).
1
1, 2, 6, 1, 3, 9, 2, 6, 18, 54, 1, 3, 9, 27, 81, 2, 6, 18, 54, 162, 486, 1, 3, 9, 27, 81, 243, 729, 2, 6, 18, 54, 162, 486, 1458, 4374, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049
OFFSET
0,2
REFERENCES
Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology, Dover, New York, 1978, pp. 57-58.
FORMULA
T(n, k) = 3^k * (1 + (n mod 2)).
From G. C. Greubel, Dec 30 2022: (Start)
T(n, k) = 3^k*(3 - (-1)^n)/2.
T(n, 0) = (3 - (-1)^n)/2.
T(n, n) = 3^n*(3 - (-1)^n)/2.
T(2*n, n) = A000244(n).
T(2*n+1, n+1) = 6*T(2*n, n).
T(2*n+1, n) = 2*T(2*n, n).
T(2*n+1, n-1) = 6*T(2*n, n).
Sum_{k=0..n} T(n, k) = (1/4)*(3 - (-1)^n)*(3^(n+1) - 1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/8)*(3 - (-1)^n)*(1 + (-1)^n*3^(n+1)).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/8)*(3*(6 - (-1)^binomial(n+1, 2))*3^floor(n/2) - (6 + (-1)^n)). (End)
EXAMPLE
Triangle begins as:
1;
2, 6;
1, 3, 9;
2, 6, 18, 54;
1, 3, 9, 27, 81;
2, 6, 18, 54, 162, 486;
1, 3, 9, 27, 81, 243, 729;
MATHEMATICA
Table[3^k*(1+Mod[n, 2]), {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Magma) [3^k*(3-(-1)^n)/2: k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2022
(SageMath)
def A122761(n, k): return 3^k*(3-(-1)^n)/2
flatten([[A122761(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 30 2022
CROSSREFS
Cf. A000244.
Sequence in context: A121601 A369346 A355929 * A100469 A360857 A124320
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Sep 21 2006
EXTENSIONS
Name and formula corrected by Jon Perry, Oct 15 2012
Edited by G. C. Greubel, Dec 30 2022
STATUS
approved