login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122597
a(0) = 1, a(1) = 2, s = 1; for n >= 2, if a(n-1) is even and s = 0 then set a(n) = a(n-1)/2 and s = 1; otherwise set a(n) = a(n-1) + a(n-2) and s = 0.
1
1, 2, 3, 5, 8, 4, 12, 6, 18, 9, 27, 36, 18, 54, 27, 81, 108, 54, 162, 81, 243, 324, 162, 486, 243, 729, 972, 486, 1458, 729, 2187, 2916, 1458, 4374, 2187, 6561, 8748, 4374, 13122, 6561, 19683, 26244, 13122, 39366, 19683, 59049, 78732, 39366, 118098, 59049
OFFSET
0,2
FORMULA
For n >= 6, a(n) = A122164(n+5), so there is an explicit formula for the n-th term.
G.f.: -(15*x^10-15*x^9+3*x^8-3*x^7+6*x^6+x^5+8*x^4+5*x^3+3*x^2+2*x+1) / (3*x^5-1). - Alois P. Heinz, Jul 29 2013
MAPLE
a:= n-> if n<=5 then [1, 2, 3, 5, 8, 4][n+1] else [2, 1, 3, 4, 2][modp(n+2, 5)+1] *3^iquo(n+2, 5) fi: seq (a(n), n=0..50); # Alois P. Heinz, Sep 02 2008
MATHEMATICA
Do[a[n] = {1, 2, 3, 5, 8, 4, 12, 6, 18, 9, 27}[[n+1]], {n, 0, 10}]; a[n_] := a[n] = 3 a[n-5]; Array[a, 50, 0] (* Jean-François Alcover, Nov 07 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 06 2008
EXTENSIONS
More terms from Alois P. Heinz, Sep 02 2008
STATUS
approved