login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122598
a(0) = 0; a(1) = 1; if n is odd then a(n) = 2*a(n-1) - (n-1)*a(n-2) otherwise a(n) = 2*(a(n-1) - (n-2)*a(n-2)).
1
0, 1, 2, 2, -4, -16, 0, 96, 192, -384, -3840, -3840, 69120, 184320, -1290240, -5160960, 25804800, 134184960, -557383680, -3530096640, 13005619200, 96613171200, -326998425600, -2779486617600, 8828957491200, 84365593804800, -255058771968000, -2703622982860800, 7855810176614400
OFFSET
0,3
REFERENCES
E. S. R. Gopal, Specific Heats at Low Temperatures, Plenum Press, New York, 1966, pages 36-40.
LINKS
FORMULA
a(n) = 2*a(n-1) - (n-1)*a(n-2) for n odd > 1; a(n) = 2*(a(n-1) - (n-2)*a(n-2)) for n even > 1.
MAPLE
f:= proc(n) option remember;
if n::odd then 2*procname(n-1) - (n-1)*procname(n-2)
else 2*procname(n-1) - 2*(n-2)*procname(n-2)
fi
end proc:
f(0):= 0: f(1):= 1:
map(f, [$0..100]); # Robert Israel, Mar 15 2017
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := a[n] = If[Mod[n, 2] == 1, 2*a[n - 1] - ( n - 1)*a[n - 2], 2*(a[n - 1] - (n - 2)*a[n - 2])] b = Table[a[n], {n, 0, 30}]
nxt[{n_, a_, b_}]:={n+1, b, If[EvenQ[n], 2*b-n*a, 2(b-(n-1)a)]}; Transpose[ NestList[ nxt, {1, 0, 1}, 30]][[2]] (* Harvey P. Dale, Dec 15 2014 *)
CROSSREFS
Sequence in context: A153968 A153965 A121221 * A279069 A257609 A087783
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Sep 19 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 01 2006
STATUS
approved