login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122581 a(n) = a(n - 1) - 2*a(n - 2) + a(n - 3) - 4*a(n - 4) + 2*a(n - 5). 5
1, 1, 1, 1, 1, -2, -5, -2, 4, 13, 19, -5, -50, -65, -20, 118, 283, 187, -311, -914, -1001, 334, 3040, 4405, 835, -8273, -17030, -11189, 20068, 60178, 60427, -29165, -192491, -274310, -39845, 553798, 1070812, 635629, -1341437, -3836765, -3693914, 2237287, 12425356, 16921054, 1409755, -36343973 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

This recursion is inspired by Ulam's early experiments in derivative recursions.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,-2,1,-4,2).

FORMULA

G.f.: x*(1+2*x^2+x^3+5*x^4)/(1-x+2*x^2-x^3+4*x^4-2*x^5). - R. J. Mathar, Nov 18 2007

MAPLE

A122581:= proc(n) option remember; if n <= 5 then 1; else A122581(n-1) -2*A122581(n-2)+A122581(n-3)+2*(-2*A122581(n-4)+A122581(n-5)); fi; end: seq(A122581(n), n=1..50) ; # R. J. Mathar, Sep 18 2007

MATHEMATICA

a[n_]:= a[n]= If[n<6, 1, a[n-1] -2*a[n-2] +a[n-3] -2*(2*a[n-4] -a[n-5])];

Table[a[n], {n, 50}]

PROG

(Sage)

@CachedFunction # a=A122581

def a(n): return 1 if (n<6) else a(n-1) -2*a(n-2) +a(n-3) -4*a(n-4) +2*a(n-5)

[a(n) for n in (1..50)] # G. C. Greubel, Nov 28 2021

CROSSREFS

Cf. A122582, A122583, A122584.

Sequence in context: A077200 A275748 A216625 * A151871 A220247 A220319

Adjacent sequences:  A122578 A122579 A122580 * A122582 A122583 A122584

KEYWORD

sign

AUTHOR

Roger L. Bagula, Sep 19 2006

EXTENSIONS

Edited by N. J. A. Sloane, Oct 01 2006

More terms from R. J. Mathar, Sep 18 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 22:01 EDT 2022. Contains 357063 sequences. (Running on oeis4.)