login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122502
Expansion of x/(1 - 22 x^2 - 54 x^3 - 38 x^4).
0
0, 1, 0, 22, 54, 522, 2376, 15236, 82512, 483332, 2728296, 15667920, 89257896, 510388840, 2913416640, 16643861824, 95047963488, 542884234608, 3100533567552, 17708509939040, 101139309767520, 577645632221792
OFFSET
1,4
REFERENCES
R. G. Newton, Scattering Theory of Waves and Particles, McGraw Hill, New York, 1966, pp. 557ff.
FORMULA
a(0)=0, a(1)=1, a(2)=0, a(3)=22, a(n)=22*a(n-2)+54*a(n-3)+38*a(n-4) [From Harvey P. Dale, Aug 12 2011]
MATHEMATICA
f[x_] = -38 - 54 x - 22 x^2 + x^4 ExpandAll[x^4*f[1/x]] a=Table[ SeriesCoefficient[ Series[x/(1-22 x^2-54 x^3-38 x^4), {x, 0, 50}], n], {n, 0, 50}]
CoefficientList[Series[x/(1-22 x^2-54 x^3-38 x^4), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, 22, 54, 38}, {0, 1, 0, 22}, 31] (* Harvey P. Dale, Aug 12 2011 *)
CROSSREFS
Sequence in context: A290381 A324486 A351170 * A244212 A303582 A289015
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 15 2006
EXTENSIONS
Edited by N. J. A. Sloane, Serp 17 2006
STATUS
approved