Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jul 31 2015 20:38:00
%S 0,1,0,22,54,522,2376,15236,82512,483332,2728296,15667920,89257896,
%T 510388840,2913416640,16643861824,95047963488,542884234608,
%U 3100533567552,17708509939040,101139309767520,577645632221792
%N Expansion of x/(1 - 22 x^2 - 54 x^3 - 38 x^4).
%D R. G. Newton, Scattering Theory of Waves and Particles, McGraw Hill, New York, 1966, pp. 557ff.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0, 22, 54, 38).
%F a(0)=0, a(1)=1, a(2)=0, a(3)=22, a(n)=22*a(n-2)+54*a(n-3)+38*a(n-4) [From Harvey P. Dale, Aug 12 2011]
%t f[x_] = -38 - 54 x - 22 x^2 + x^4 ExpandAll[x^4*f[1/x]] a=Table[ SeriesCoefficient[ Series[x/(1-22 x^2-54 x^3-38 x^4),{x,0,50}],n],{n,0,50}]
%t CoefficientList[Series[x/(1-22 x^2-54 x^3-38 x^4),{x,0,30}],x] (* or *) LinearRecurrence[{0,22,54,38},{0,1,0,22},31] (* _Harvey P. Dale_, Aug 12 2011 *)
%K nonn
%O 1,4
%A _Roger L. Bagula_, Sep 15 2006
%E Edited by _N. J. A. Sloane_, Serp 17 2006