login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122451
A diagonal above central terms of pendular trinomial triangle A122445, ignoring leading zeros.
8
1, 4, 17, 72, 305, 1300, 5576, 24068, 104510, 456332, 2002675, 8829892, 39096653, 173781548, 775183764, 3469084436, 15571135682, 70084045640, 316242702258, 1430351652352, 6483550388522, 29448610671464, 134010580021152
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = B(x)^2*(B(x)-1)/(x*(1+x - x*B(x))) where B(x) is the g.f. of A122446.
G.f.: 4*(1-2*x^2-f(x))/(x*(1+2*x^2+f(x))^2*(1-x+2*x^2+2*x^3+(1+x)*f(x))), where f(x) = sqrt(1 -4*x -4*x^2 +4*x^4). - G. C. Greubel, Mar 17 2021
MATHEMATICA
f[x_]:= Sqrt[1-4*x-4*x^2+4*x^4];
CoefficientList[Series[4*(1-2*x^2-f[x])/(x*(1+2*x^2+f[x])^2*(1-x+2*x^2+2*x^3+(1+x)*f[x])), {x, 0, 30}], x] (* G. C. Greubel, Mar 17 2021 *)
PROG
(PARI) {a(n)=local(A, B=2/(1+2*x^2+sqrt(1-4*x-4*x^2+4*x^4+x^2*O(x^n)))); A=B^2*(B-1)/x/(1+x-x*B); polcoeff(A, n, x)}
(Sage)
def f(x): return sqrt(1-4*x-4*x^2+4*x^4)
def A122449_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( 4*(1-2*x^2-f(x))/(x*(1+2*x^2+f(x))^2*(1-x+2*x^2+2*x^3+(1+x)*f(x))) ).list()
A122449_list(30) # G. C. Greubel, Mar 17 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
f:= func< x | Sqrt(1-4*x-4*x^2+4*x^4) >;
Coefficients(R!( 4*(1-2*x^2-f(x))/(x*(1+2*x^2+f(x))^2*(1-x+2*x^2+2*x^3+(1+x)*f(x))) )); // G. C. Greubel, Mar 17 2021
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 07 2006
STATUS
approved