login
A122449
A lower diagonal of pendular trinomial triangle A122445.
8
1, 2, 6, 22, 83, 324, 1298, 5302, 22002, 92488, 392996, 1685232, 7283511, 31694460, 138746706, 610601374, 2699835614, 11988069480, 53433418716, 238986495540, 1072250526558, 4824638825032, 21765895919444, 98433111857436
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = B(x)^2/(1+x -x*B(x)) where B(x) is the g.f. of A122446.
G.f.: 2/(1 -2*x -2*x^2 -2*x^3 +4*x^4 +4*x^5 +(1 +2*x^2 +2*x^3)*f(x)), where f(x) = sqrt(1 -4*x -4*x^2 +4*x^4). - G. C. Greubel, Mar 17 2021
MATHEMATICA
f[x_] := Sqrt[1 - 4*x - 4*x^2 + 4*x^4];
CoefficientList[Series[2/(1-2*x-2*x^2-2*x^3+4*x^4+4*x^5 +(1+2*x^2+2*x^3)*f[x]), {x, 0, 30}], x] (* G. C. Greubel, Mar 17 2021 *)
PROG
(PARI) {a(n)=local(A, B=2/(1+2*x^2+sqrt(1-4*x-4*x^2+4*x^4+x^2*O(x^n)))); A=B^2/(1+x-x*B); polcoeff(A, n, x)}
(Sage)
def f(x): return sqrt(1-4*x-4*x^2+4*x^4)
def A122449_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( 2/(1-2*x-2*x^2-2*x^3+4*x^4+4*x^5 +(1+2*x^2+2*x^3)*f(x)) ).list()
A122449_list(30) # G. C. Greubel, Mar 17 2021
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
f:= func< x | Sqrt(1-4*x-4*x^2+4*x^4) >;
Coefficients(R!( 2/(1-2*x-2*x^2-2*x^3+4*x^4+4*x^5 +(1+2*x^2+2*x^3)*f(x)) )); // G. C. Greubel, Mar 17 2021
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 07 2006
STATUS
approved