login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122276
If b(n-1) + b(n-2) < n then a(n) = 0, otherwise a(n) = 1, where b(i) = A096535(i).
6
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1
OFFSET
2,1
COMMENTS
Conjecture: lim {n -> infinity} x_n / y_n = 1, where x_n is the number of j <= n such that A096535(j) = A096535(j-1) + A096535(j-2) and y_n is the number of j <= n such that A096535(j) = A096535(j-1) + A096535(j-2) - j. Computational support: x_n / y_n = 0.9999917 for n = 10^9.
LINKS
FORMULA
a(n) = floor((A096535(n-1)+A096535(n-2))/n)
MATHEMATICA
f[s_] := f[s] = Append[s, Mod[s[[ -2]] + s[[ -1]], Length[s]]]; t = Nest[f, {1, 1}, 106]; s = {}; Do[AppendTo[s, If[t[[n]] + t[[n + 1]] < n + 1, 0, 1]], {n, 105}]; s (* Robert G. Wilson v Sep 02 2006 *)
PROG
(PARI) {m=107; a=1; b=1; for(n=2, m, d=divrem(a+b, n); print1(d[1], ", "); a=b; b=d[2])}
CROSSREFS
Sequence in context: A089010 A162289 A373139 * A352679 A239199 A265718
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 29 2006
STATUS
approved