login
A122274
Expansion of q^(-1/3) * eta(q)^3 * eta(q^5) in powers of q.
2
1, -3, 0, 5, 0, -1, -4, 0, -5, 0, 8, 10, 0, -5, 0, -20, 7, 0, 0, 0, 2, 13, 0, 0, 0, 12, -16, 0, -10, 0, 0, -20, 0, 15, 0, 10, 14, 0, 20, 0, -11, -24, 0, 0, 0, -10, -4, 0, 0, 0, 8, 0, 0, -15, 0, 40, 13, 0, 0, 0, -22, 20, 0, -20, 0, -21, -16, 0, 0, 0, -28, 40, 0, 0, 0, 10, 26, 0, 20, 0, 2, -6, 0, -25, 0, -9, 0, 0, -10
OFFSET
0,2
FORMULA
Euler transform of period 5 sequence [ -3, -3, -3, -3, -4, ...].
Define c(3*k + 1) = A122274(k), c(3*k + 2) = sqrt(-5) * A122275(k), c(3*k) = 0. Then c(n) is multiplicative with c(3^e) = 0^e, c(p^e) = p^(e/2)*(1 + (-1)^e)/2 if p == 7, 13 (mod 15), c(p^e) = (-p)^(e/2)*(1 + (-1)^e)/2 if p == 11, 14 (mod 15), c(p^e) = c(p) * c(p^(e-1)) - p * c(p^(e-2)) if p == 1, 4 (mod 15), c(p^e) = c(p) * c(p^(e-1)) + p * c(p^(e-2)) if p == 2, 8 (mod 15), where c(p) is determined by c(2) = 1, or c(p) = 2*x when p = x^2 + 15*y^2, x == 1 (mod 3) for p == 1, 4 (mod 15) and c(p) = 2*x * sqrt(-5) when p = 5*x^2 + 3*y^2, x == 2 (mod 3) for p == 2, 8 (mod 15).
G.f. is a period 1 Fourier series which satisfies f(-1 / (45 t)) = 10125^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A122275. - Michael Somos, Jun 23 2012
G.f.: Product_{k>0} (1 - x^k)^3 * (1 - x^(5*k)).
a(5*n + 2) = a(5*n + 4) = 0. a(5*n + 3) = 5 * A122275(n). -a(n) = A122275(5*n + 1).
EXAMPLE
G.f. = 1 - 3*x + 5*x^3 - x^5 - 4*x^6 - 5*x^8 + 8*x^10 + 10*x^11 - 5*x^13 + ...
G.f. = q - 3*q^4 + 5*q^10 - q^16 - 4*q^19 - 5*q^25 + 8*q^31 + 10*q^34 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 QPochhammer[ x^5], {x, 0, n}]; (* Michael Somos, Jun 23 2012 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^5 + A), n))}
(PARI) {a(n) = my(A, p, e, w, x, y, z, a0, a1); if( n<0, 0, n = 3*n + 1; A = factor(n); w = quadgen(-20); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, z = p * kronecker( 5, p); if( p==2, x=1, p==5, x=-1, (p%15) != 2^valuation( p%15, 2), x=0, if( valuation( p%15, 2)%2, for( y=1, sqrtint(p\3), if( issquare( (p-3*y^2)/5, &x), break)), for( y=1, sqrtint(p\15), if( issquare( p - 15*y^2, &x), break))); x *= 2*(-1)^(p%3 != x%3)); a0=1; a1 = y = x * if( p%3==1, 1, w); for( i=2, e, x = y*a 1 - z*a0; a0=a1; a1=x); a1))) };
CROSSREFS
Cf. A122275.
Sequence in context: A348259 A276833 A166586 * A373023 A340525 A003966
KEYWORD
sign
AUTHOR
Michael Somos, Sep 08 2006
STATUS
approved