login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122008
Expansion of (2*x-1)*(x-1)*x / ((3*x-1)*(3*x^2-1)).
1
1, 0, 5, 6, 33, 72, 261, 702, 2241, 6480, 19845, 58806, 177633, 530712, 1595781, 4780782, 14353281, 43040160, 129153285, 387400806, 1162300833, 3486725352, 10460471301, 31380882462, 94143533121, 282429005040, 847289672325, 2541864234006, 7625600673633
OFFSET
1,3
COMMENTS
Limit_{n->infinity} a(n+1)/a(n) = 3.
REFERENCES
Alain M. Robert, Linear Algebra, Examples and Applications World Scientific, 2005, p. 58.
FORMULA
a(n) = 3^(n-2) - (-1)^n*A038754(n)/3. - R. J. Mathar, Nov 07 2011
From Colin Barker, Feb 05 2017: (Start)
a(n) = 3^(n-2) - 3^((n-3)/2)/2*(-2 + 2*(-1)^n + sqrt(3) + (-1)^n*sqrt(3)) for n>0.
a(n) = 3*a(n-1) + 3*a(n-2) - 9*a(n-3) for n>3.
(End)
MAPLE
A038754 := proc(n)
if type(n, 'even') then
3^(n/2);
else
2*3^((n-1)/2) ;
end if;
end proc:
A122008 := proc(n)
3^(n-2)-(-1)^n*A038754(n)/3 ;
end proc:
seq(A122008(n), n=1..10) ; # R. J. Mathar, Nov 07 2011
MATHEMATICA
M = {{0, 1, 2}, {1, 2, 0}, {2, 0, 1}} v[1] = {1, 0, 0} v[n_] := v[n] = M.v[n - 1] a1 = Table[v[n][[1]], {n, 1, 50}]
LinearRecurrence[{3, 3, -9}, {1, 0, 5}, 30] (* Harvey P. Dale, Aug 28 2023 *)
PROG
(PARI) Vec((2*x-1)*(x-1)*x / ((3*x-1)*(3*x^2-1)) + O(x^50)) \\ Colin Barker, Feb 05 2017
CROSSREFS
Sequence in context: A137762 A177118 A151506 * A248254 A212918 A255197
KEYWORD
nonn,easy
AUTHOR
STATUS
approved