login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A121561
The number of iterations of "subtract the largest prime less than or equal to the current value" to go from n to the limiting value 0 or 1.
9
0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2
OFFSET
1,9
COMMENTS
Number of steps to go from n to A121559(n).
The sequence has the form of blocks of numbers; see A121562 for the lengths of those blocks.
LINKS
EXAMPLE
a(9) = 2 because there are 2 steps in going from 9 to 0 in A121559: 9 mod 7 = 2 and 2 mod 2 = 0.
MATHEMATICA
LrgstPrm[n_] := Block[{k = n}, While[ !PrimeQ@ k, k-- ]; k]; f[n_] := Block[{c = 0, d = n}, While[d > 1, d = d - LrgstPrm@d; c++ ]; c]; Array[f, 105] (* Robert G. Wilson v, Feb 29 2008 *)
PROG
(Python)
from sympy import prevprime
def a(n): return 0 if n == 0 or n == 1 else 1 + a(n - prevprime(n+1))
print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Jul 26 2022
CROSSREFS
Cf. A121559, A064722, a(n)=1: A093515, a(n)=2: A093513, a(n)=3: A138026, a(n)=4: A138027.
Sequence in context: A328483 A321856 A175078 * A078772 A088018 A204909
KEYWORD
easy,nonn
AUTHOR
Kerry Mitchell, Aug 07 2006
STATUS
approved