login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093513 Transform of the prime sequence by the Rule89 cellular automaton. 10
1, 3, 4, 9, 10, 15, 16, 21, 22, 25, 26, 27, 28, 33, 34, 35, 36, 39, 40, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 63, 64, 65, 66, 69, 70, 75, 76, 77, 78, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 105, 106, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
As described in A051006, a monotonic sequence can be mapped into a fractional real. Then the binary digits of that real can be treated (transformed) by an elementary cellular automaton. Taken resulted sequence of binary digits as a fractional real, it can be mapped back into a sequence, as in A092855.
LINKS
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
PROG
(PARI) {ca_tr(ca, v)= /* Calculates the Cellular Automaton transform of the vector v by the rule ca */
local(cav=vector(8), a, r=[], i, j, k, l, po, p=vector(3));
a=binary(min(255, ca)); k=matsize(a)[2]; forstep(i=k, 1, - 1, cav[k-i+1]=a[i]);
j=0; l=matsize(v)[2]; k=v[l]; po=1;
for(i=1, k+2, j*=2; po=isin(i, v, l, po); j=(j+max(0, sign(po)))% 8; if(cav[j+1], r=concat(r, i)));
return(r) /* See the function "isin" at A092875 */}
CROSSREFS
Sequence in context: A090120 A129783 A301919 * A047230 A277138 A327282
KEYWORD
easy,nonn
AUTHOR
Ferenc Adorjan (fadorjan(AT)freemail.hu)
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 10:55 EDT 2024. Contains 371241 sequences. (Running on oeis4.)