login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121470
Expansion of x*(1+5*x+2*x^2+x^3)/((1+x)*(1-x)^3).
1
1, 7, 16, 31, 49, 73, 100, 133, 169, 211, 256, 307, 361, 421, 484, 553, 625, 703, 784, 871, 961, 1057, 1156, 1261, 1369, 1483, 1600, 1723, 1849, 1981, 2116, 2257, 2401, 2551, 2704, 2863, 3025, 3193, 3364, 3541, 3721, 3907, 4096, 4291, 4489, 4693, 4900
OFFSET
1,2
FORMULA
From R. J. Mathar, Jul 10 2009: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) = 5/8 - 3n/2 + 9n^2/4 + 3*(-1)^n/8.
G.f.: x*(1+5*x+2*x^2+x^3)/((1+x)*(1-x)^3). (End)
MAPLE
A121410 := proc(nmin) local M, a, v, wev, wod, n ; a := [] ; M := linalg[matrix](2, 2, [0, 1, -1, 2]) ; v := linalg[vector](2, [1, 7]) ; wev := linalg[vector](2, [0, 3]) ; wod := linalg[vector](2, [0, 6]) ; while nops(a) < nmin do a := [op(a), v[1]] ; n := nops(a)+1 ; v := evalm(M &* v) ; if n mod 2 = 0 then v := evalm(v+wev) ; else v := evalm(v+wod) ; fi ; od: RETURN(a) ; end: A121410(80) ; # R. J. Mathar, Sep 18 2007
MATHEMATICA
M := {{0, 1}, {-1, 2} } v[1] = {1, 7} w[n_] = If[Mod[n, 2] == 0, {0, 3}, {0, 6}] v[n_] := v[n] = M.v[n - 1] + w[n] a = Table[v[n][[1]], {n, 1, 30}]
CoefficientList[Series[x (1+5x+2x^2+x^3)/((1+x)(1-x)^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, 0, -2, 1}, {1, 7, 16, 31}, 50] (* Harvey P. Dale, Mar 10 2017 *)
CROSSREFS
Sequence in context: A140511 A286119 A286085 * A286733 A286773 A019541
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 07 2006
EXTENSIONS
Edited by N. J. A. Sloane, Sep 16 2006
More terms from R. J. Mathar, Sep 18 2007
New name from Joerg Arndt, Jun 28 2013
STATUS
approved