login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x*(1+5*x+2*x^2+x^3)/((1+x)*(1-x)^3).
1

%I #28 May 03 2022 13:17:46

%S 1,7,16,31,49,73,100,133,169,211,256,307,361,421,484,553,625,703,784,

%T 871,961,1057,1156,1261,1369,1483,1600,1723,1849,1981,2116,2257,2401,

%U 2551,2704,2863,3025,3193,3364,3541,3721,3907,4096,4291,4489,4693,4900

%N Expansion of x*(1+5*x+2*x^2+x^3)/((1+x)*(1-x)^3).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F From _R. J. Mathar_, Jul 10 2009: (Start)

%F a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) = 5/8 - 3n/2 + 9n^2/4 + 3*(-1)^n/8.

%F G.f.: x*(1+5*x+2*x^2+x^3)/((1+x)*(1-x)^3). (End)

%p A121410 := proc(nmin) local M,a,v, wev,wod,n ; a := [] ; M := linalg[matrix](2,2,[0,1,-1,2]) ; v := linalg[vector](2,[1,7]) ; wev := linalg[vector](2,[0,3]) ; wod := linalg[vector](2,[0,6]) ; while nops(a) < nmin do a := [op(a),v[1]] ; n := nops(a)+1 ; v := evalm(M &* v) ; if n mod 2 = 0 then v := evalm(v+wev) ; else v := evalm(v+wod) ; fi ; od: RETURN(a) ; end: A121410(80) ; # _R. J. Mathar_, Sep 18 2007

%t M := {{0, 1}, {-1, 2} } v[1] = {1, 7} w[n_] = If[Mod[n, 2] == 0, {0, 3}, {0, 6}] v[n_] := v[n] = M.v[n - 1] + w[n] a = Table[v[n][[1]], {n, 1, 30}]

%t CoefficientList[Series[x (1+5x+2x^2+x^3)/((1+x)(1-x)^3),{x,0,50}],x] (* or *) LinearRecurrence[{2,0,-2,1},{1,7,16,31},50] (* _Harvey P. Dale_, Mar 10 2017 *)

%Y Cf. A003215, A005448.

%K nonn

%O 1,2

%A _Roger L. Bagula_, Sep 07 2006

%E Edited by _N. J. A. Sloane_, Sep 16 2006

%E More terms from _R. J. Mathar_, Sep 18 2007

%E New name from _Joerg Arndt_, Jun 28 2013