login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121472
A devil's staircase constant: decimal expansion of the sums involving powers of 2 and Beatty sequences given by: c = Sum_{n>=1} 1/2^[log_2(e^n)] = Sum_{n>=1} [log(2^n)]/2^n.
3
8, 5, 7, 2, 8, 2, 3, 8, 3, 1, 0, 3, 4, 0, 6, 1, 7, 7, 5, 1, 1, 9, 0, 3, 3, 0, 8, 5, 0, 9, 7, 3, 3, 9, 9, 7, 5, 9, 0, 9, 8, 8, 3, 1, 2, 0, 9, 3, 1, 4, 6, 9, 2, 2, 2, 5, 7, 8, 2, 4, 2, 9, 2, 4, 6, 0, 6, 9, 3, 3, 3, 3, 2, 6, 8, 3, 3, 6, 3, 4, 8, 2, 8, 9, 1, 0, 8, 1, 1, 5, 2, 4, 9, 3, 5, 4, 1, 1, 2, 7, 0, 0, 6, 2
OFFSET
0,1
COMMENTS
The continued fraction (A121473) of this constant has large partial quotients: c = [0; 1, 6, 146, 8, 37783544111994270385152, ...]. See the MathWorld link for more information regarding devil's staircase constants.
LINKS
Eric Weisstein's World of Mathematics, Devil's Staircase
FORMULA
c = Sum_{n>=1} 1/2^[n/log(2)] = Sum_{n>=1} [n*log(2)]/2^n, where [z]=floor(z).
EXAMPLE
c=0.85728238310340617751190330850973399759098831209314692225782429246...
PROG
(PARI) a(n)=local(t=log(2), x=sum(m=1, 10*(n+1), 1/2^floor(m/t))); floor(10^n*x)%10
(PARI) a(n)=local(t=log(2), x=sum(m=1, 10*(n+1), floor(m*t)/2^m)); floor(10^n*x)%10
CROSSREFS
Cf. A121473 (continued fraction), A121474 (dual constant), A121475.
Sequence in context: A020786 A304226 A019868 * A117039 A327949 A085663
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, Aug 01 2006
STATUS
approved