login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121126
Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).
1
1, 4, 40, 330, 2814, 22464, 174798, 1321920, 9798840, 71383680, 512709912, 3638048256, 25547006016, 177770557440, 1227161345184, 8411086946304, 57284205913728, 387902612275200, 2613053064378240, 17519092525301760, 116946290184302592, 777543028253392896
OFFSET
3,2
LINKS
J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Isomer enumeration of polygonal systems representing polycyclic conjugated hydrocarbons: unbranched catacondensed systems with tetragons and q-gons, J. Molec. Struct. (Theochem), 364 (1996), 1-13, Table 12 with q=9 and alpha=3.
Index entries for linear recurrences with constant coefficients, signature (24,-204,576,1260,-9504,7776,31104,-46656).
FORMULA
G.f.: x^3 + 4*x^4 + 40*x^5 - 6*x^6*(-55 + 851*x - 3708*x^2 - 3273*x^3 + 54540*x^4 - 63828*x^5 - 178848*x^6 + 309096*x^7) / ( (6*x^2-1)^2*(6*x-1)^4 ). - R. J. Mathar, Aug 01 2019
a(n) = 24*a(n-1) - 204*a(n-2) + 576*a(n-3) + 1260*a(n-4) - 9504*a(n-5) + 7776*a(n-6) + 31104*a(n-7) - 46656*a(n-8) for n>13. - Colin Barker, Aug 03 2019
MAPLE
# Exhibit 1
Hra := proc(r::integer, a::integer, q::integer)
binomial(r-1, a-1)*(q-3)+binomial(r-1, a) ;
%*(q-3)^(r-a-1) ;
end proc:
Jra := proc(r::integer, a::integer, q::integer)
binomial(r-2, a-2)*(q-3)^2 +2*binomial(r-2, a-1)*(q-3) +binomial(r-2, a) ;
%*(q-3)^(r-a-2) ;
end proc:
# Exhibit 2
A121126 := proc(r::integer)
q := 9 ;
a := 3 ;
Jra(r, a, q)+binomial(2, r-a)+( 1 +(-1)^(r+a) +(1+(-1)^a)*(1-(-1)^r)*floor((q-3)/2)/2)*Hra(floor(r/2), floor(a/2), q) ;
%/4 ;
end proc:
seq(A121126(n), n=3..30) ; # R. J. Mathar, Aug 01 2019
MATHEMATICA
Join[{1, 4, 40}, LinearRecurrence[{24, -204, 576, 1260, -9504, 7776, 31104, -46656}, {330, 2814, 22464, 174798, 1321920, 9798840, 71383680, 512709912}, 19]] (* Jean-François Alcover, Apr 04 2020 *)
PROG
(PARI) Vec(x^3*(1 - 20*x + 148*x^2 - 390*x^3 - 510*x^4 + 3672*x^5 - 522*x^6 - 9288*x^7 - 5832*x^8 + 15552*x^9 + 11664*x^10) / ((1 - 6*x)^4*(1 - 6*x^2)^2) + O(x^30)) \\ Colin Barker, Aug 03 2019
CROSSREFS
Sequence in context: A190541 A298198 A043031 * A145730 A069721 A223176
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 13 2006
STATUS
approved