login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).
1

%I #28 Apr 04 2020 10:30:31

%S 1,4,40,330,2814,22464,174798,1321920,9798840,71383680,512709912,

%T 3638048256,25547006016,177770557440,1227161345184,8411086946304,

%U 57284205913728,387902612275200,2613053064378240,17519092525301760,116946290184302592,777543028253392896

%N Unbranched a-4-catapolynonagons (see Brunvoll reference for precise definition).

%H Colin Barker, <a href="/A121126/b121126.txt">Table of n, a(n) for n = 3..1000</a>

%H J. Brunvoll, S. J. Cyvin and B. N. Cyvin, <a href="https://doi.org/10.1016/0166-1280(95)04463-9">Isomer enumeration of polygonal systems representing polycyclic conjugated hydrocarbons: unbranched catacondensed systems with tetragons and q-gons</a>, J. Molec. Struct. (Theochem), 364 (1996), 1-13, Table 12 with q=9 and alpha=3.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (24,-204,576,1260,-9504,7776,31104,-46656).

%F G.f.: x^3 + 4*x^4 + 40*x^5 - 6*x^6*(-55 + 851*x - 3708*x^2 - 3273*x^3 + 54540*x^4 - 63828*x^5 - 178848*x^6 + 309096*x^7) / ( (6*x^2-1)^2*(6*x-1)^4 ). - _R. J. Mathar_, Aug 01 2019

%F a(n) = 24*a(n-1) - 204*a(n-2) + 576*a(n-3) + 1260*a(n-4) - 9504*a(n-5) + 7776*a(n-6) + 31104*a(n-7) - 46656*a(n-8) for n>13. - _Colin Barker_, Aug 03 2019

%p # Exhibit 1

%p Hra := proc(r::integer,a::integer,q::integer)

%p binomial(r-1,a-1)*(q-3)+binomial(r-1,a) ;

%p %*(q-3)^(r-a-1) ;

%p end proc:

%p Jra := proc(r::integer,a::integer,q::integer)

%p binomial(r-2,a-2)*(q-3)^2 +2*binomial(r-2,a-1)*(q-3) +binomial(r-2,a) ;

%p %*(q-3)^(r-a-2) ;

%p end proc:

%p # Exhibit 2

%p A121126 := proc(r::integer)

%p q := 9 ;

%p a := 3 ;

%p Jra(r,a,q)+binomial(2,r-a)+( 1 +(-1)^(r+a) +(1+(-1)^a)*(1-(-1)^r)*floor((q-3)/2)/2)*Hra(floor(r/2),floor(a/2),q) ;

%p %/4 ;

%p end proc:

%p seq(A121126(n),n=3..30) ; # _R. J. Mathar_, Aug 01 2019

%t Join[{1, 4, 40}, LinearRecurrence[{24, -204, 576, 1260, -9504, 7776, 31104, -46656}, {330, 2814, 22464, 174798, 1321920, 9798840, 71383680, 512709912}, 19]] (* _Jean-François Alcover_, Apr 04 2020 *)

%o (PARI) Vec(x^3*(1 - 20*x + 148*x^2 - 390*x^3 - 510*x^4 + 3672*x^5 - 522*x^6 - 9288*x^7 - 5832*x^8 + 15552*x^9 + 11664*x^10) / ((1 - 6*x)^4*(1 - 6*x^2)^2) + O(x^30)) \\ _Colin Barker_, Aug 03 2019

%K nonn,easy

%O 3,2

%A _N. J. A. Sloane_, Aug 13 2006