login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120676
Number of prime factors of even squarefree numbers A039956.
1
1, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 2, 2, 4, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 3, 2, 4, 2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 2, 4, 2, 3, 3, 2, 2, 3, 3, 2, 3, 4
OFFSET
1,2
LINKS
FORMULA
a(n) = A001221(A039956(n)) = A001222(A039956(n)) = A120675(n)+1.
MAPLE
issquarefree := proc(n::integer) local nf, ifa ; nf := op(2, ifactors(n)) ; for ifa from 1 to nops(nf) do if op(2, op(ifa, nf)) >= 2 then RETURN(false) ; fi ; od : RETURN(true) ; end: A001221 := proc(n::integer) RETURN(nops(numtheory[factorset](n))) ; end: A039956 := proc(maxn) local n, a ; a := [2] ; for n from 4 to maxn by 2 do if issquarefree(n) then a := [op(a), n] ; fi ; od : RETURN(a) ; end: A120676 := proc(maxn) local a, n; a := A039956(maxn) ; for n from 1 to nops(a) do a := subsop(n=A001221(a[n]), a) ; od ; RETURN(a) ; end: nmax := 600 : a := A120676(nmax) : for n from 1 to nops(a) do printf("%d, ", a[n]) ; od ; # R. J. Mathar, Aug 17 2006
MATHEMATICA
A264387[n_] := (# - 2)/4 & /@ Select[2 Range@n, SquareFreeQ]; A039956[n_] := 2*(1 + 2*A264387[n]); PrimeNu[A039956[50]] (* G. C. Greubel, May 16 2017 *)
PrimeOmega/@Select[2*Range[300], SquareFreeQ] (* Harvey P. Dale, Jul 28 2019 *)
CROSSREFS
Sequence in context: A355035 A105068 A363274 * A184172 A125973 A227196
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Jun 24 2006
EXTENSIONS
Corrected and extended by R. J. Mathar, Aug 17 2006
STATUS
approved