login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of prime factors of even squarefree numbers A039956.
1

%I #12 Jul 28 2019 18:31:12

%S 1,2,2,2,2,2,3,2,2,3,2,2,2,3,3,2,3,2,2,2,3,2,3,3,2,2,3,2,3,2,2,3,2,2,

%T 3,3,2,3,3,3,2,2,2,4,2,2,3,2,3,3,3,2,3,2,3,2,2,3,3,3,2,2,3,2,3,3,2,4,

%U 2,2,3,2,2,3,3,3,2,2,4,2,2,3,3,3,3,2,3,3,3,3,3,2,2,2,4,2,3,3,2,2,3,3,2,3,4

%N Number of prime factors of even squarefree numbers A039956.

%H G. C. Greubel, <a href="/A120676/b120676.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A001221(A039956(n)) = A001222(A039956(n)) = A120675(n)+1.

%p issquarefree := proc(n::integer) local nf, ifa ; nf := op(2,ifactors(n)) ; for ifa from 1 to nops(nf) do if op(2,op(ifa,nf)) >= 2 then RETURN(false) ; fi ; od : RETURN(true) ; end: A001221 := proc(n::integer) RETURN(nops(numtheory[factorset](n))) ; end: A039956 := proc(maxn) local n,a ; a := [2] ; for n from 4 to maxn by 2 do if issquarefree(n) then a := [op(a),n] ; fi ; od : RETURN(a) ; end: A120676 := proc(maxn) local a,n; a := A039956(maxn) ; for n from 1 to nops(a) do a := subsop(n=A001221(a[n]),a) ; od ; RETURN(a) ; end: nmax := 600 : a := A120676(nmax) : for n from 1 to nops(a) do printf("%d,",a[n]) ; od ; # _R. J. Mathar_, Aug 17 2006

%t A264387[n_] := (# - 2)/4 & /@ Select[2 Range@n, SquareFreeQ]; A039956[n_] := 2*(1 + 2*A264387[n]); PrimeNu[A039956[50]] (* _G. C. Greubel_, May 16 2017 *)

%t PrimeOmega/@Select[2*Range[300],SquareFreeQ] (* _Harvey P. Dale_, Jul 28 2019 *)

%K nonn

%O 1,2

%A _Lekraj Beedassy_, Jun 24 2006

%E Corrected and extended by _R. J. Mathar_, Aug 17 2006