

A120355


a(n) = min{k>0: the nth convergent to e equals m/k! for some m}.


0



1, 1, 3, 4, 7, 8, 13, 31, 67, 13, 89, 83, 18089, 5441, 17377, 36269, 26021, 4909, 10391023, 1097, 28879, 1846921, 519691, 1329313, 793279, 7553783, 3308341, 65676881, 662407, 677311, 2425388512913, 4403182913, 10832561
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.


FORMULA



EXAMPLE

The 6th convergent to e is 87/32 and 32 divides 8! but not 7!, so a(6) = 8.


CROSSREFS



KEYWORD

hard,more,nonn


AUTHOR



EXTENSIONS



STATUS

approved



