The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120113 Bi-diagonal inverse of number triangle A120101. 3
 1, -6, 1, 0, -5, 1, 0, 0, -14, 1, 0, 0, 0, -3, 1, 0, 0, 0, 0, -11, 1, 0, 0, 0, 0, 0, -13, 1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, -17, 1, 0, 0, 0, 0, 0, 0, 0, 0, -19, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Sub-diagonal is -A120114(n-1). LINKS G. C. Greubel, Rows n = 0..100 of the triangle, flattened FORMULA T(n, k) = 1 if k = n, T(n, k) = -A120114(n-1) if k = n-1, otherwise 0. - G. C. Greubel, May 05 2023 EXAMPLE Triangle begins 1; -6, 1; 0, -5, 1; 0, 0, -14, 1; 0, 0, 0, -3, 1; 0, 0, 0, 0, -11, 1; 0, 0, 0, 0, 0, -13, 1; 0, 0, 0, 0, 0, 0, -2, 1; 0, 0, 0, 0, 0, 0, 0, -17, 1; 0, 0, 0, 0, 0, 0, 0, 0, -19, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; MATHEMATICA A120114[n_]:= LCM@@Range[2*n+4]/(LCM@@Range[2*n+2]); A120113[n_, k_]:= If[k==n, 1, If[k==n-1, -A120114[n-1], 0]]; Table[A120113[n, k], {n, 0, 16}, {k, 0, n}]//Flatten PROG (Magma) A120114:= func< n | Lcm([1..2*n+4])/Lcm([1..2*n+2]) >; A120113:= func< n, k | k eq n select 1 else k eq n-1 select -A120114(n-1) else 0 >; [A120113(n, k): k in [0..n], n in [0..16]]; // G. C. Greubel, May 05 2023 (SageMath) def A120113(n, k): if (k

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 04:08 EST 2023. Contains 367681 sequences. (Running on oeis4.)