This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120007 Mobius transform of sum of prime factors of n with multiplicity (A001414). 5
 0, 2, 3, 2, 5, 0, 7, 2, 3, 0, 11, 0, 13, 0, 0, 2, 17, 0, 19, 0, 0, 0, 23, 0, 5, 0, 3, 0, 29, 0, 31, 2, 0, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 0, 0, 47, 0, 7, 0, 0, 0, 53, 0, 0, 0, 0, 0, 59, 0, 61, 0, 0, 2, 0, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 3, 0, 83, 0, 0, 0, 0, 0, 89, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Same as A014963, except this function is zero when n is not a prime power, whereas A014963 is one. a(n) = A010055(n)*A007947(n). [Reinhard Zumkeller, Mar 26 2010] a(n) = A064911(A007947(n)). [Reinhard Zumkeller, Sep 19 2011] LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Prime Factor. Eric Weisstein's World of Mathematics, Prime Zeta Function. FORMULA If n is a prime power p^k, k>0, a(n) = p; otherwise a(n) = 0. Dirichlet g.f. sum_{p prime} p/(p^s-1) = sum_{k>0} primezeta(ks-1). a(n) = Sum_{k=2..n} k*A010051(k)*(floor(k^n/n)-floor((k^n -1)/n)). - Anthony Browne, Jun 17 2016 MATHEMATICA Table[If[Length@ # == 1, #[[1, 1]], 0] &@ FactorInteger@ n, {n, 96}] /. 1 -> 0 (* Michael De Vlieger, Jun 19 2016 *) PROG (Haskell) a120007 1 = 0 a120007 n | until ((> 0) . (`mod` spf)) (`div` spf) n == 1 = spf           | otherwise = 0           where spf = a020639 n -- Reinhard Zumkeller, Sep 19 2011 CROSSREFS Cf. A001414, A014963, A010051. Sequence in context: A022662 A059051 A130069 * A092509 A214053 A214056 Adjacent sequences:  A120004 A120005 A120006 * A120008 A120009 A120010 KEYWORD nonn AUTHOR Franklin T. Adams-Watters, Jun 02 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.