login
A119959
p^2-p+1 central polygonal numbers with prime indices A002061(prime(n)).
8
3, 7, 21, 43, 111, 157, 273, 343, 507, 813, 931, 1333, 1641, 1807, 2163, 2757, 3423, 3661, 4423, 4971, 5257, 6163, 6807, 7833, 9313, 10101, 10507, 11343, 11773, 12657, 16003, 17031, 18633, 19183, 22053, 22651, 24493, 26407, 27723, 29757, 31863
OFFSET
1,1
COMMENTS
Prime terms belong to A074268, which is a subset of A002383, A087126, A034915, A085104.
In every interval of prime(n)^2 integers, a(n) is the number that are not divisible by prime(n) plus the number that are divisible by prime(n)^2. - Peter Munn, Dec 12 2020
FORMULA
a(n) = prime(n)^2 - prime(n) + 1.
a(n) = A036689(n)+1. - R. J. Mathar, Aug 13 2019
Product_{n>=1} (1 - 1/a(n)) = zeta(6)/(zeta(2)*zeta(3)) (A068468). - Amiram Eldar, Nov 07 2022
MATHEMATICA
Table[Prime[n]^2-Prime[n]+1, {n, 1, 100}]
PROG
(PARI) a(n) = {my(p = prime(n)); p^2 - p + 1; } \\ Amiram Eldar, Nov 07 2022
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Aug 02 2006
STATUS
approved