OFFSET
0,2
COMMENTS
Transform of binomial(2,n) under the matrix A119879.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..480
FORMULA
E.g.f.: (1 + 2*x + x^2/2) * sech(x).
a(n) = Sum_{k=0..n} A119879(n,k)*C(2,k).
a(n) = EulerE(n) + 2*n*EulerE(n-1) + n*(n-1)*EulerE(n-2)/2, n>1. - Benedict W. J. Irwin, May 30 2016
MATHEMATICA
Table[If[n<2, n+1, EulerE[n] +2*n*EulerE[n-1] +n*(n-1)*EulerE[n-2]/2], {n, 0, 30}] (* Benedict W. J. Irwin, May 30 2016 *)
With[{nn=30}, CoefficientList[Series[(1+2x+x^2/2)Sech[x], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jul 01 2018 *)
PROG
(PARI) my(x='x+O('x^44)); Vec(serlaplace((1 + 2*x + x^2/2) / cosh(x))) \\ Joerg Arndt, Jun 01 2016
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (1+2*x+x^2/2) /Cosh(x) ))); // G. C. Greubel, Jun 07 2023
(SageMath)
E=euler_number
def A119883(n):
if n<2: return n+1
else: return E(n) +2*n*E(n-1) +binomial(n, 2)*E(n-2)
[A119883(n) for n in range(41)] # G. C. Greubel, Jun 07 2023
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 26 2006
STATUS
approved