login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119763
Irregular array where row n is the positive integers which divide the sum of all previous rows. a(1)=1.
1
1, 1, 1, 2, 1, 5, 1, 11, 1, 23, 1, 47, 1, 5, 19, 95, 1, 5, 43, 215, 1, 479, 1, 7, 137, 959, 1, 2063, 1, 4127, 1, 5, 13, 65, 127, 635, 1651, 8255, 1, 83, 229, 19007, 1, 38327, 1, 5, 15331, 76655, 1, 137, 1231, 168647, 1, 13, 109, 239, 1417, 3107, 26051, 338663, 1, 19
OFFSET
1,4
FORMULA
a(n,k) | sum(j=1..n-1,l=1,2,...) a(j,l). a(n,k) > a(n,k-1). a(n,1)=1. - R. J. Mathar, Jun 23 2006
EXAMPLE
Array begins:
1
1
1,2
1,5
1,11
1,23
1,47
1,5,19,95
The sum of these terms is 215.
Since the divisors 215 are 1,5,43 and 215, row 9 =(1,5,43,215).
MAPLE
A119763 := proc(nmax) local a, dvs; a := [1] ; while nops(a) < nmax do dvs := numtheory[divisors](sum('a[i]', i=1..nops(a))) ; a := [op(a), op(dvs) ] ; od ; end: a := A119763(200) ; for i from 1 to nops(a) do printf("%d, ", a[i]) ; od ; # R. J. Mathar, Jun 23 2006
MATHEMATICA
Module[{arr={1}}, Do[AppendTo[arr, Divisors[Total[arr]]]; arr=Flatten[arr], {20}]; arr] (* Harvey P. Dale, May 27 2012 *)
PROG
(PLT Scheme) ;; positive-divisors gives the list of divisors of n in decreasing order
(define (A119763 n seq)
(cond
[(= n 0) seq]
[else (A119763 (sub1 n) (append seq (reverse (positive-divisors (apply + seq)))))]))
(A119763 20 (list 1)) ;; Joshua Zucker, Jun 21 2006
CROSSREFS
Cf. A027750.
Sequence in context: A132081 A054251 A163963 * A363087 A092142 A348497
KEYWORD
nonn,tabf
AUTHOR
Leroy Quet, Jun 18 2006
EXTENSIONS
More terms from Joshua Zucker and R. J. Mathar, Jun 21 2006
STATUS
approved