login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119563
Define F(n) = 2^(2^n)+1 = n-th Fermat number, M(n) = 2^n-1 = the n-th Mersenne number. Then a(n) = F(n)+M(n)-1 = 2^(2^n) + 2^n - 1.
7
2, 5, 19, 263, 65551, 4294967327, 18446744073709551679, 340282366920938463463374607431768211583, 115792089237316195423570985008687907853269984665640564039457584007913129640191
OFFSET
0,1
COMMENTS
The first 5 entries are primes. Are there infinitely many primes in this sequence?
FORMULA
a(n) = A119561(n)-2=A000215(n)+A000225(n)-1. - R. J. Mathar, Apr 22 2007
EXAMPLE
F(2) = 2^(2^2)+1 = 17, M(2) = 2^2-1 = 3, F(2)+ M(2) - 1 = 19
PROG
(PARI) fm3(n) = for(x=0, n, y=2^(2^x)+2^x-1; print1(y", "))
CROSSREFS
Sequence in context: A218386 A055813 A119550 * A270398 A269997 A270547
KEYWORD
nonn
AUTHOR
Cino Hilliard, May 31 2006
EXTENSIONS
Edited by N. J. A. Sloane, Jun 03 2006
STATUS
approved