login
A119564
Define F(n) = 2^(2^n)+1 = n-th Fermat number, M(n) = 2^n-1 = the n-th Mersenne number. Then a(n) = F(n)-M(n)-1 = 2^(2^n) - 2^n + 1.
3
2, 3, 13, 249, 65521, 4294967265, 18446744073709551553, 340282366920938463463374607431768211329, 115792089237316195423570985008687907853269984665640564039457584007913129639681
OFFSET
0,1
COMMENTS
The numbers n that divide a(n) are A373580. - Thomas Ordowski, Jun 11 2024
FORMULA
a(n) = (2^(2^n) - 1) - (2^n - 2). - Thomas Ordowski, Jun 11 2024
EXAMPLE
F(2) = 2^(2^2)+1 = 17, M(2) = 2^2-1 = 3, F(2)-M(2)-1 = 13.
PROG
(PARI) fm4(n) = for(x=0, n, y=2^(2^x)+1-(2^x-1)-1; print1(y", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, May 31 2006
EXTENSIONS
Edited by N. J. A. Sloane, Jun 03 2006
Definition corrected by R. J. Mathar, May 15 2007
STATUS
approved