The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118909 a(1) = 4; a(n) is least semiprime > a(n-1)^2. 2
 4, 21, 445, 198026, 39214296677, 1537761063871773242347, 2364709089560047865452947255794201194068433, 5591849078247910476736920566826713466552016538943524658263883555662554776622687075541 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Semiprime analog of A055496 a(1) = 2; a(n) is smallest prime > 2*a(n-1). See also A059785 a(n+1)=prevprime(a(n)^2), with a(1) = 2. With that, of course, there's always a prime between n and 2n, so a(n) < 2^n. The obverse of this is A118908 a(1) = 4; a(n) is greatest semiprime < a(n-1)^2. LINKS Table of n, a(n) for n=1..8. EXAMPLE a(8) = a(7)^2 + 52 and there is no smaller k such that a(7)^2 + k is semiprime. MATHEMATICA nxt[n_]:=Module[{sp=n^2+1}, While[PrimeOmega[sp]!=2, sp++]; sp]; NestList[nxt, 4, 7] (* Harvey P. Dale, Oct 22 2012 *) PROG (Python) from itertools import accumulate from sympy.ntheory.factor_ import primeomega def nextsemiprime(n): while primeomega(n + 1) != 2: n += 1 return n + 1 def f(anm1, _): return nextsemiprime(anm1**2) print(list(accumulate([4]*6, f))) # Michael S. Branicky, Apr 21 2021 CROSSREFS Cf. A001358, A055496, A076656, A006992, A005384, A005385, A118908-A118913. Sequence in context: A319363 A270586 A048164 * A225157 A158947 A000868 Adjacent sequences: A118906 A118907 A118908 * A118910 A118911 A118912 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, May 05 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 02:01 EST 2024. Contains 370335 sequences. (Running on oeis4.)