login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118624
Primes of the form prime(n+1)*prime(n+3) - prime(n)*prime(n+2) - 1, ordered by n.
1
59, 359, 197, 719, 449, 971, 1019, 937, 419, 863, 809, 2203, 1979, 1693, 743, 2693, 3169, 1823, 3119, 1637, 2239, 4547, 4241, 4967, 4877, 4259, 2609, 5651, 7759, 7823, 4219, 8971, 6863, 6983, 7451, 3989, 12161, 8147, 11423, 10369, 9059, 3299, 6863
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MAPLE
P:=proc(n)local i, j; for i from 1 by 1 to n do j:=abs(ithprime(i)*ithprime(i+2)-ithprime(i+1)*ithprime(i+3))-1; if isprime(j) then print(j); fi; od; end: P(1000);
MATHEMATICA
s=Table[Prime[n+1]*Prime[n+3] - Prime[n]*Prime[n+2] - 1, {n, 147}]; Select[s, PrimeQ] (* James C. McMahon, Sep 16 2024 *)
Select[#[[2]]#[[4]]-#[[1]]#[[3]]-1&/@Partition[Prime[Range[300]], 4, 1], PrimeQ] (* Harvey P. Dale, Oct 05 2024 *)
PROG
(PARI) my(v=List(), p=2, q=3, r=5); forprime(s=7, 1e6, my(t=q*s-p*r-1); if(ispseudoprime(t), listput(v, t)); p=q; q=r; r=s); v=Vec(v) \\ Charles R Greathouse IV, Feb 17 2011
CROSSREFS
Cf. A117854.
Sequence in context: A033238 A142265 A290183 * A244772 A142604 A071771
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition clarified by Charles R Greathouse IV, Feb 17 2011
STATUS
approved