Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 05 2024 17:10:35
%S 59,359,197,719,449,971,1019,937,419,863,809,2203,1979,1693,743,2693,
%T 3169,1823,3119,1637,2239,4547,4241,4967,4877,4259,2609,5651,7759,
%U 7823,4219,8971,6863,6983,7451,3989,12161,8147,11423,10369,9059,3299,6863
%N Primes of the form prime(n+1)*prime(n+3) - prime(n)*prime(n+2) - 1, ordered by n.
%H Charles R Greathouse IV, <a href="/A118624/b118624.txt">Table of n, a(n) for n = 1..10000</a>
%p P:=proc(n)local i,j; for i from 1 by 1 to n do j:=abs(ithprime(i)*ithprime(i+2)-ithprime(i+1)*ithprime(i+3))-1; if isprime(j) then print(j); fi; od; end: P(1000);
%t s=Table[Prime[n+1]*Prime[n+3] - Prime[n]*Prime[n+2] - 1,{n,147}];Select[s,PrimeQ] (* _James C. McMahon_, Sep 16 2024 *)
%t Select[#[[2]]#[[4]]-#[[1]]#[[3]]-1&/@Partition[Prime[Range[300]],4,1],PrimeQ] (* _Harvey P. Dale_, Oct 05 2024 *)
%o (PARI) my(v=List(), p=2, q=3, r=5); forprime(s=7, 1e6, my(t=q*s-p*r-1); if(ispseudoprime(t),listput(v,t)); p=q; q=r; r=s); v=Vec(v) \\ _Charles R Greathouse IV_, Feb 17 2011
%Y Cf. A117854.
%K nonn,easy
%O 1,1
%A _Paolo P. Lava_ and _Giorgio Balzarotti_, May 09 2006
%E Definition clarified by _Charles R Greathouse IV_, Feb 17 2011