This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118575 Dividuus numbers: numbers which are divisible by (1) the sum of their digits,(2) the product of their digits,(3) the digital root and (4) the multiplicative digital root. 1
 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 111, 112, 132, 135, 144, 216, 312, 315, 432, 612, 624, 1116, 1212, 1344, 1416, 2112, 2232, 3168, 3312, 4112, 4224, 6624, 8112, 11112, 11115, 11133, 11172, 11232, 11313, 11331, 11424, 11664, 12132, 12216, 12312, 12432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Dividuus : Latin for "divisible" Most of these numbers are even, but there are some odd numbers too. However, none of them seem to end on 7 (except for the obvious number 7 itself). Are there numbers in the sequence ending in 7? LINKS Chai Wah Wu, Table of n, a(n) for n = 1..2639 EXAMPLE 624 is in the sequence because (1) the sum of its digits is 6+4+2=12, (2) the product of its digits is 6*4*2=48, (3) the digital root is 3, (4) the multiplicative digital root is 6 and 624 is divisible by 12,48,3 and 6. MAPLE filter:= proc(n) local L, s, p;   L:= convert(n, base, 10);   s:= convert(L, `+`);   if n mod s <> 0 then return false fi;   p:= convert(L, `*`);   if p = 0 or n mod p <> 0 then return false fi;   while s > 10 do     s:= convert(convert(s, base, 10), `+`);   od:   if n mod s <> 0 then return false fi;   while p > 10 do     p:= convert(convert(p, base, 10), `*`);   od:   p > 0 and n mod p = 0; end proc: select(filter, [\$1..10^4]); # Robert Israel, Aug 24 2014 PROG (Python) from operator import mul from functools import reduce from gmpy2 import t_mod, mpz def A031347(n): ....while (n > 9): ........n = reduce(mul, (int(d) for d in str(n))) ....return n A118575 = [n for n in range(1, 10**9) if A031347(n) and not ..........(str(n).count('0') or t_mod(n, (1+t_mod((n-1), 9))) or ..........t_mod(n, A031347(n)) or t_mod(n, sum((mpz(d) for d in str(n)))) ..........or t_mod(n, reduce(mul, (mpz(d) for d in str(n)))))] # Chai Wah Wu, Aug 26 2014 CROSSREFS Cf. A007953 (sum of digits), A007954 (product of digits), A010888 (digital root), A031347 (multiplicative digital root). Intersection of A038186 and A064700 and A064807. Subsequence of A005349, A007602, A038186, A064700, A064807. Sequence in context: A051004 A032575 A038186 * A327453 A289791 A290386 Adjacent sequences:  A118572 A118573 A118574 * A118576 A118577 A118578 KEYWORD base,nonn AUTHOR Luc Stevens (lms022(AT)yahoo.com), May 07 2006 EXTENSIONS Inserted a(17)=216 by Chai Wah Wu, Aug 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 05:43 EDT 2019. Contains 328026 sequences. (Running on oeis4.)