login
A118244
Triangle, rows = inverse binomial transforms of sequences generated from the Pell polynomials.
0
1, 2, 1, 5, 5, 2, 12, 21, 18, 6, 29, 80, 116, 84, 24, 70, 290, 642, 774, 480, 120
OFFSET
0,2
COMMENTS
Columns of A118243 are f(x), the Pell polynomials. (terms of A038137 considered as Pell polynomial coefficients): 1; (x + 1); (x^2 + 2x + 2); (x^3 + 3x^2 + 5x + 3); (x^4 + 4x^3 + 9x^2 + 10x + 5);...For example, (x^3 + 3x^2 + 5x + 3), (f(x), x=1,2,3...), generates column 3 of triangle A118243: (12, 33, 72, 135, 228, 357...); and the inverse binomial transform of (12, 33, 72...) = row 3 of the triangle: (12, 21, 18, 6). The array of A118243 is obtained by deleting the Fibonacci sequence (first row of the A073133 array).
FORMULA
n-th row of the triangle = inverse binomial transform of n-th column of A118243.
EXAMPLE
Row 3 of the triangle = (5, 5, 2), = inverse binomial transform of column 3 of A118243: (5, 10, 17, 26, 37...). Example: 17 = 1*2 + 1*5 + 2*5 = 2 + 5 + 10.
First few rows of the triangle are:
1;
2, 1;
5, 5, 2;
12, 21, 18, 6;
29, 80, 116, 84, 24;
70, 290, 642, 774, 480, 120;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Apr 17 2006
STATUS
approved