login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118184
Column 0 of the matrix log of triangle A118180, after term in row n is multiplied by n: a(n) = n*[log(A118180)](n,0), where A118180(n,k) = 3^(k*(n-k)).
4
0, 1, -1, 3, -23, 329, 18231, -22030373, 34718491601, -130548608723439, 1300095260497408879, -35497483240662990289357, 2687397326811421691366217657, -562747611676887059779727492799911, 320110532506391993959111359699070808231
OFFSET
0,4
COMMENTS
The entire matrix log of triangle A118180 is determined by column 0 (this sequence): [log(A118180)](n,k) = a(n-k)/(n-k)*(3^k)^(n-k) for n>k>=0.
LINKS
FORMULA
G.f.: x/(1-x)^2 = Sum_{n>=0} a(n)*x^n/(1-3^n*x).
By using the inverse transformation: a(n) = Sum_{k=0..n} k*A118183(n-k)*(3^k)^(n-k) for n>=0.
a(3^n) is divisible by 3^n.
EXAMPLE
Column 0 of log(A118180) = [0, 1, -1/2, 3/3, -23/4, 329/5, 18231/6, ...].
The g.f. is illustrated by:
x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + ...
= x/(1-3*x) - x^2/(1-9*x) + 3*x^3/(1-27*x) - 23*x^4/(1-81*x) + 329*x^5/(1-243*x) + 18231*x^6/(1-729*x) - 22030373*x^7/(1-2187*x) + ...
MATHEMATICA
A118183[n_]:= A118183[n]= If[n<2, (-1)^n, -Sum[3^(j*(n-j))*A118183[j], {j, 0, n-1}]];
a[n_]:= a[n]= -Sum[3^(j*(n-j))*j*A118183[j], {j, 0, n}];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
PROG
(PARI) {a(n)=local(T=matrix(n+1, n+1, r, c, if(r>=c, (3^(c-1))^(r-c))), L=sum(m=1, #T, -(T^0-T)^m/m)); return(n*L[n+1, 1])}
(Sage)
@CachedFunction
def A118183(n): return (-1)^n if (n<2) else -sum(3^(j*(n-j))*A118183(j) for j in (0..n-1))
def a(n): return (-1)*sum( 3^(j*(n-j))*j*A118183(j) for j in (0..n))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021
CROSSREFS
Sequence in context: A222076 A338301 A129458 * A027486 A377742 A092664
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 15 2006
STATUS
approved