login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118181
Row sums of triangle A118180: a(n) = Sum_{k=0..n} (3^k)^(n-k) for n>=0.
3
1, 2, 5, 20, 137, 1622, 33293, 1182440, 72811793, 7757988842, 1433154521621, 458101483131260, 253879024041595289, 243453910296759945662, 404765167247068325944349, 1164432505878183620543030480
OFFSET
0,2
COMMENTS
Also equals column 0 of the matrix square of triangle A118180, where [A118180^2](n,k) = a(n-k)*(3^k)^(n-k) for n>=k>=0.
LINKS
FORMULA
G.f.: A(x) = Sum_{n>=0} x^n/(1-3^n*x).
EXAMPLE
A(x) = 1/(1-x) + x/(1-3x) + x^2/(1-9x) + x^3/(1-27x) + ...
= 1 + 2*x + 5*x^2 + 20*x^3 + 137*x^4 + 1622*x^5 + 33293*x^6 +...
MAPLE
seq( add(3^(k*(n-k)), k=0..n), n=0..30); # modified by G. C. Greubel, Jun 29 2021
MATHEMATICA
Table[Sum[3^(k*(n-k)), {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
PROG
(PARI) a(n)=sum(k=0, n, (3^k)^(n-k) );
(Magma) [(&+[3^(k*(n-k)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
(Sage) [sum(3^(k*(n-k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
CROSSREFS
Cf. A118180 (triangle), A118182 (antidiagonal sums); A118183, A118184.
Sequence in context: A012317 A297630 A297629 * A140988 A136650 A229662
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 15 2006
STATUS
approved